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Abstract. Binding energies of surface polarons outside polar crystal surfaces are calculated 
quantum mechanically by considering the interactions of outside electrons with both elec- 
tronic and ionic polarizations of the crystals. Results show that quantum mechanical modi- 
fications of image potentials due to electronic polarization reduce polaron binding energies by 
40-50% compared with those calculated with image potentials due to electronic polarization 
approximated by their electrostatic limits. Substitution of infinitely high frequencies for the 
finite vibrational frequencies of electronic polarizations changes the calculated polaron 
binding energies by less than 5% for the materials considered. 

Surface polaron states outside polar crystal surfaces have been extensively studied (Sak 
1972, Evans and Mills 1973, Ueba 1980, de Bodas and Hipolito 1983, Trninic-Radja et 
aZ1989, Lee and Antoniewicz 1989) ever since the pioneering work of Sak (1972) and 
Evans and Mills (1973). In most of these works (Sak 1972, Ueba 1980, Trninic-Radja et 
aZ1989, Lee and Antoniewicz 1989), however, image potentials acting upon electrons 
due to electronic polarizations, which localize electrons to surfaces and determine 
dominantly surface polaron binding energies, are approximated by their classical elec- 
trostatic limits with the seemingly reasonable argument that the vibrational frequencies 
of electronic polarizations are much higher than those of ionic polarizations caused by 
the relative separations of positive and negative ions when crystals vibrate in optical 
modes. Recently, a number of authors (Nieminen and Hodges 1978, Manson and 
Ritchie 1981, Echenique 1985, Zheng et aZ1989) have reported on quantum mechanical 
calculations of image potentials, with the conclusion that quantum mechanical cor- 
rections to electrostatic image potentials are not negligible, especially when electrons 
are in the near vicinity of crystal surfaces. Evans and Mills (1973) pointed out that 
quantum mechanical non-local image potentials will reduce surface polaron binding 
energies by a factor of 16/25 compared with those calculated with electrostatic image 
potentials, though in their calculation they have neglected electronic polarizations 
by assuming the high-frequency dielectric constant E, = 1. In this letter, we report a 
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calculation of surface polaron binding energies outside polar crystal surfaces with image 
potentials due to both electronic and ionic polarizations treated quantum mechanically. 

The electronic polarization of the crystal considered is approximated by point dipoles 
vibrating harmonically at a single frequency. It is straightforward to refine the model by 
considering point dipoles vibrating at several different frequencies if necessary. An 
electron outside the polar crystal surface interacts with both the electronic and ionic 
polarization fields. The calculation method is mathematically equivalent to that for 
a polaron near a polyatomic crystal surface with many optical vibrational branches 
(Matsuura 1977, Lepine 1981, Sols and Ritchie 1987). The polaron Hamiltonian reads 

where me is the electron mass outside the surface (z>O). q and p are the in-plane 
component of the wavevector of the surface vibrational modes and the positional vector 
of the electron, respectively. U $  creates a surface vibrational mode in branchjwith wave 
vector q. V,(z) is the interaction constant for the interaction between the electron and 
surface vibrational modes given by 

with A. (Ao+ w) the surface area of the crystal. The dielectric function &(U) of the 
crystal is given by 

with oL1 and oT1 (oL2 and on) the longitudinal and transverse vibration frequencies 
respectively related to the electronic (ionic) polarization field. The eigenfrequencies of 
the surface modes osj ( j  = 1,2) are determined by 

&(COsj) = -1 (4) 
with osl and oS2 (wS1 % wS2) originating from the electronic and ionic polarizations, 
respectively. The derivation of Hpol (1) and relationships between oLj, wTj and micro- 
scopic quantities of the crystal will be given later in a more detailed paper. In order to 
retain the familiar surface polaron theory, where one considers only the vibrational 
modes of the ionic polarization and approximates the electronic polarization by an 
electrostatic image potential and when one lets oL1 and wT1 go to infinity, we define the 
high-frequency dielectric constant of the crystal by 

E ,  = w:L1/w&. 

E , / & ,  = ot1/w& 

If we set o = 0 in equation (3) we have 

where E ,  = ~ ( 0 )  is the static dielectric constant of the crystal. 
For simplicity, we assume that the bottom of the conduction band of the crystal lies 

far above the vacuum level, so the crystal surface represents an infinitely high potential 
barrier. The ansatz of the polaron ground state is taken as 

v = 91(Z)U1 U210) (7) 
where 10) is the vacuum state of the surface polarization fields, U1 and U 2  are the Lee- 
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Low-Pines unitary transformations often used in surface polaron theory (de Bodas 
and Hipolito 1983), and q ( z )  is the trial wavefunction of the electron distribution 
perpendicular to the surface. The polaron ground state energy with the polaron in-plane 
wavevector kll = 0 is given variationally by 

If we suppose the electron is localized near z = z o  and take cp(z) = 6 ( z  - 2") as a 
consequence, then the potential energy term in equation (8) becomes 

where asj = 4mee2[h2usiwsi(d~/dw)~W=Wsi]-1 is the polar coupling constant of the sur- 
face mode wsj. Veff(zo) approaches the electrostaticimage potential (the last limit in (9)) 
whentheelectronisfarawayfromthesurface,i.e. zo S U;' = (h/2mewsi)'/2. When the 
electron is in the near vicinity of the surface (zo+ 0), Veff(zo) is finite, while the elec- 
trostatic image potential tends to infinity. The effective potential associated with the 
vibrational mode of branch j = 1 in equation (9) is the image potential due to the 
electronic polarization. To show this we set wL1 and wT1 + CQ in equation (9), but keep 
o i l /w& = E , ,  and we have 

When the electron has a spatial distribution perpendicular to the surface, the poten- 
tial energy term in equation (8) cannot, in principle, be approximated by a local one- 
electron image potential. The polaron energy and effective potential of (8) must be 
calculated self-consistently. We calculate the polaron ground state energy E, (equation 
(8)) variationally using the function 

q ( z )  = 2 p 3 k  e-@* (11) 
with /3 the variational parameter. In order to make comparisons we also calculate the 
polaron ground state energy by approximating the potential energy associated with the 
vibrational mode of branch j = 1 in (8) by a local potential Veff,l(z) (equation (10)). That 
is, we calculate 

If we set wL1 and wT1 + CQ but keep wi1/w& = E,, E,  goes to the polaron ground state 
energy calculated in the literature (Sak 1972, Ueba 1980, Trninic-Radja et a1 1989, Lee 
and Antoniewicz 1989) with the assumption that the image potential due to the electronic 
polarization is approximated by its electrostatic limit. In figure 1 E, and E, are plotted 
as functions of wL1/wLz with other parameters taken as those of a ZnO surface (see table 

Two points are noteworthy from the numerical results in figure 1: (i) the polaron 
binding energy calculated with non-local image potentials (Eb = - E,) is much less 
than that calculated with an approximated local image potential due to the electronic 
polarization (8, = -E,) ,  even in the limit wL1-+, w; (ii) if we assume that wT1 is of 

1) * 
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Figure 1. Surface polaron binding energies out- 
side a polar crystal surface calculated with the 
non-local image potentials (full curve) and with 
the image potential due to the electronic polar- 
ization approximated by its electrostatic limit 
(broken curve). The results are given as functions 

%O0 loo0 of wL,/oLz with other parameters taken as those 
of a ZnO crystal (see table 1). 
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Table 1. Surface polaron binding energies for several polar crystal surfaces calculated with 
non-local image potentials E$"' and with image potentials due to electronic polarizations 
approximated by their electrostatic limits Edo), and their ratios I = EJo)/&"), in the limit 
oLi -+ m. The experimental parameters used in the calculation are taken from Beni and Rice 
(1978). 

Polar 
crystal E, E,  6wL2(mev) ~,jO)(ev) Ei")(ev) A 

ZnO 8.59 4.0 72.0 0.2860 0.4080 0.701 
CdS 8.58 5.86 36.8 0.3096 0.4675 0.662 
CdTe 10.31 6.90 21.2 0.3335 0.5072 0.657 
GaAs 12.35 10.48 36.8 0.3827 0.5927 0.646 
InSb 17.90 15.70 23.9 0.4278 0.6655 0.643 

about the same order of magnitude as the crystal band gap, then for the ZnO surface we 
have wL1/wL2 100. 

From figure 1 we see that substitution of an infinitely high frequency for the finite 
vibrational frequency of the electronic polarization changes the polaron binding energy 
by less than 5% (see the full curve in figure l), while the polaron binding energy is 
overestimated by 40% for the calculation which approximates the non-local image 
potential due to electronic polarization by its electrostatic limit (compare the broken 
and full curves in figure 1). In table 1, polaron binding energies calculated with non- 
local image potentials Eio) and with image potentials due to electronic polarizations 
approximated by their electrostatic limits ELo) in the limit wL1 --j are listed for a number 
of polar crystal surfaces. 

Detailed calculations show that if one approximates finite vibrational frequencies of 
electronic polarizations by infinitely high frequencies, the effects of non-local image 
potentials on polaron binding energies can be described by introducing a multiplication 
factor a into the electrostatic image potentials due to electronic polarizations. For the 
trial wavefunction q ( z )  we used (equation (11)) aequal tog and independent of material 
parameters. 
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